2024 Consumer Confidence Report Data CALEDONIA WATER UTILITY - VILLAGE OF, PWS ID: 25201847

Este informe contiene información importante acerca de su agua potable. Haga que alguien lo traduzca para usted, o hable con alguien que lo entienda.

Dlaim ntawv tshaabzu nuav muaj lug tseemceeb heev nyob rua huv kws has txug cov dlej mej haus. Kuas ib tug paab txhais rua koj, los nrug ib tug kws paub lug thaam.

Water System Information

If you would like to know more about the information contained in this report, please contact Tony Bunkelman at (262) 835-6416.

Opportunity for input on decisions affecting your water quality

Utility Commission meetings are held at 6:00 PM on the first Wednesday of each month at the Caledonia Village Hall. Caledonia Village Hall, 5043 Chester Lane, Caledonia, WI 52402.

Health Information

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's safe drinking water hotline (800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune systems disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbial contaminants are available from the Environmental Protection Agency's safe drinking water hotline (800-426-4791).

Source(s) of Water

Source ID	Source	Depth (in feet)	Status
1	Purchased Surface Water		Active
2	Purchased Surface Water		Active

Purchased Water

PWS ID	PWS Name
24101726	OAK CREEK WATERWORKS
25200626	RACINE WATERWORKS

To obtain a summary of the source water assessment please contact, Landon Kortendick at (262) 939-9939.

Educational Information

The sources of drinking water, both tap water and bottled water, include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally- occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff and septic systems.
- Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water, which shall provide the same protection for public health.

Definitions

Term	Definition
AL	Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
HA and HAL	HA: Health Advisory. An estimate of acceptable drinking water levels for a chemical substance based on health effects information. HAL: Health Advisory Level is a concentration of a contaminant which, if exceeded, poses a health risk and may require a system to post a public notice. Health Advisories are determined by US EPA.
НІ	HI: Hazard Index: A Hazard Index is used to assess the potential health impacts associated with mixtures of contaminants. Hazard Index guidance for a class of contaminants or mixture of contaminants may be determined by the US EPA or Wisconsin Department of Health Services. If a Health Index is exceeded a system may be required to post a public notice.
Level 1 Assessment	A Level 1 assessment is a study of the water system to identify potential problems and determine, if possible, why total coliform bacteria have been found in our water system.
Level 2 Assessment	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine, if possible, why an E. coli MCL violation has occurred or why total coliform bacteria have been found in our water system, or both, on multiple occasions.
MCL	Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
MCLG	Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
MFL	million fibers per liter
MRDL	Maximum residual disinfectant level: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
MRDLG	Maximum residual disinfectant level goal: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
mrem/year	millirems per year (a measure of radiation absorbed by the body)
NTU	Nephelometric Turbidity Units
pCi/l	picocuries per liter (a measure of radioactivity)
ppm	parts per million, or milligrams per liter (mg/l)
ppb	parts per billion, or micrograms per liter (ug/l)
ppt	parts per trillion, or nanograms per liter

Term	Definition
ppq	parts per quadrillion, or picograms per liter
PHGS	PHGS: Public Health Groundwater Standards are found in NR 140 Groundwater Quality. The concentration of a contaminant which, if exceeded, poses a health risk and may require a system to post a public notice.
RPHGS	RPHGS: Recommended Public Health Groundwater Standards: Groundwater standards proposed by the Wisconsin Department of Health Services. The concentration of a contaminant which, if exceeded, poses a health risk and may require a system to post a public notice.
SMCL	Secondary drinking water standards or Secondary Maximum Contaminant Levels for contaminants that affect taste, odor, or appearance of the drinking water. The SMCLs do not represent health standards.
TCR	Total Coliform Rule
TT	Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.

Detected Contaminants

Your water was tested for many contaminants last year. We are allowed to monitor for some contaminants less frequently than once a year. The following tables list only those contaminants which were detected in your water. If a contaminant was detected last year, it will appear in the following tables without a sample date. If the contaminant was not monitored last year, but was detected within the last 5 years, it will appear in the tables below along with the sample date.

Disinfection Byproducts

Contaminant (units)	Site	MCL	MCLG	Level Found	Range	Sample Date (if prior to 2024)	Violation	Typical Source of Contaminant
HAA5 (ppb)	SM-1	60	60	20.7	4 - 37.5		No	By-product of drinking water chlorination
TTHM (ppb)	SM-1	80	0	52.2	39 - 83.5		No	By-product of drinking water chlorination
HAA5 (ppb)	SM-2	60	60	20.6	9.3 - 35		No	By-product of drinking water chlorination
TTHM (ppb)	SM-2	80	0	48.7	35 - 65.2		No	By-product of drinking water chlorination

Contaminant (units)	Site	MCL	MCLG	Level Found	Range	Sample Date (if prior to 2024)	Violation	Typical Source of Contaminant
HAA5 (ppb)	SM-3	60	60	19.8	12 – 27.4		No	By-product of drinking water chlorination
TTHM (ppb)	SM-3	80	0	33.7	19.4 - 63.4		No	By-product of drinking water chlorination
HAA5 (ppb)	SM-4	60	60	16.6	11 – 22.1		No	By-product of drinking water chlorination
TTHM (ppb)	SM-4	80	0	40.8	25.6 - 56.3		No	By-product of drinking water chlorination

Inorganic Contaminants

Contaminant (units)	Action Level	MCLG	90th Percentile Level Found	Range	# of Results	Sample Date (if prior to 2024)	Violation	Typical Source of Contaminant
COPPER (ppm)	AL=1.3	1.3	0.4300	0.0000 - 0.5900	0 of 30 results were above the action level.	8/21/2023	No	Corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives
LEAD (ppb)	AL=15	0	3.30	0.00 - 5.00	0 of 30 results were above the action level.	8/23/2023	No	Corrosion of household plumbing systems; Erosion of natural deposits

Unregulated Contaminants

Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted. EPA required us to participate in this monitoring.

Within the last 12 months we conducted Unregulated Contaminant Monitoring in accordance with US EPA rules. We are required to inform you of this sampling. We are only required to include results showing detections within this report; however, if you would like a copy of all results, please contact us at (262) 939-9939.

Additional Health Information

Some people who drink water containing **trihalomethanes** in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous system, and may have an increased risk of getting cancer.

Lead can cause serious health effects in people of all ages, especially pregnant people, infants (both formula-fed and breastfed), and young children. Lead in drinking water is primarily from materials and parts used in service lines and in home plumbing. Caledonia Water Utility -Village Of is responsible for providing high quality drinking water and removing lead pipes but cannot control the variety of materials used in the plumbing in your home. Because lead levels may vary over time, lead exposure is possible even when your tap sampling results do not detect lead at one point in time. You can help protect yourself and your family by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Using a filter, certified by an American National Standards Institute accredited certifier to reduce lead, is effective in reducing lead exposures. Follow the instructions provided with the filter to ensure the filter is used properly. Use only cold water for drinking, cooking, and making baby formula. Boiling water does not remove lead from water. Before using tap water for drinking, cooking, or making baby formula, flush your pipes for several minutes. You can do this by running your tap, taking a shower, doing laundry or a load of dishes. If you have a lead service line or galvanized requiring replacement service line, you may need to flush your pipes for a longer period. If you are concerned about lead in your water and wish to have your water tested, contact Caledonia Water Utility - Village Of (Landon Kortendick at (262) 939-9939). Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at https://www.epa.gov/safewater/lead.

Additional Information on Service Line Materials

We were required to develop an initial inventory of service lines connected to our distribution system by October 16, 2024 and to make the inventory publicly accessible. You can access the service line inventory here:

https://caledonia-wi.gov/sites/default/files/Caledonia%202024%20Inventory%20-%20EPA%20Updates.pdf

Purchased Water - Oak Creek

Our water system purchases water from OAK CREEK WATERWORKS. In addition to the detected contaminants listed above, these are the results from OAK CREEK WATERWORKS.

Source(s) of Water

Source ID	Source	Depth (in feet)	Waterbody Name	Status
2	Surface Water	45	Lake Michigan	Active

To obtain a summary of the source water assessment please contact, Mike Robe at (414) 764-1867.

Detected Contaminants

Your water was tested for many contaminants last year. We are allowed to monitor for some contaminants less frequently than once a year. The following tables list only those contaminants which were detected in your water. If a contaminant was detected last year, it will appear in the following tables without a sample date. If the contaminant was not monitored last year, but was detected within the last 5 years, it will appear in the tables below along with the sample date.

Microbiological Contaminants

Contaminant	MCL	MCLG	Count of Positives	Violation	Typical Source of Contaminant
(TCR)	Presence of coliform bacteria in <=5% of monthly samples.	0	0	IINO	Naturally present in the environment.

Disinfection Byproducts

Contaminant (units)	Site	MCL	MCLG	Level Found	Range	Sample Date (if prior to 2023)	Violation	Typical Source of Contaminant
HAA5 (ppb)	D15	60	60	13 ppb LRAA	7-15 ppb		No	By-product of drinking water disinfection
TTHM (ppb)	D15	80	0	27.5 ppb LRAA	12-34.8 ppb		No	By-product of drinking water disinfection

Contaminant (units)	Site	MCL	MCLG	Level Found	Range	Sample Date (if prior to 2023)	Violation	Typical Source of Contaminant
HAA5 (ppb)	D9	60	60	10 ppb LRAA	8-12 ppb			By-product of drinking water disinfection
TTHM (ppb)	D9	80	0	24.9 ppb LRAA	14.6- 35.2 ppb			By-product of drinking water disinfection

Inorganic Contaminants

Contaminant (units)	Site	MCL	MCLG	Level Found	Range	Sample Date (if prior to 2023)	Violation	Typical Source of Contaminant
ATRAZINE (ppb)		3	3	0.0			No	Herbicide runoff
BARIUM (ppm)		2	2	0.021			No	Natural deposits
FLUORIDE (ppm)		4	4	0.6			No	Natural deposits. Water additive that promotes strong teeth.
NITRATE (N03-N) (ppm)		10	10	0.32			No	Natural deposits, fertilizer, animal, waste, sewage.
Mercury (ppb)		2	2	.1			No	Natural deposits, cropland, factory, & landfill discharge

Contaminant (units)	Action Level	MCLG	90th Percentile Level Found	Range	Sample Date (if prior to 2023)	Violation	Typical Source of Contaminant
LEAD (ppb)	AL=15	0	2.00	0.00-2.5 0 of 30 results exceeded AL		No	Natural deposits. Corrosion of household plumbing systems.
COPPER (ppm)	AL=1.3	1.3	0.16	0.011- .0.27 0 of 30 results exceeded AL		No	Natural deposits. Corrosion of household plumbing systems.

Particulate Results

Contaminant (units)	MCL	MCLG	Level Found	Range	Sample Date (if prior to 2023)	Violation	Typical Source of Contaminant
TURBIDITY (NTU)	TT = 1 NTU TT < 0.3 NTU 95% of the time	N/A	0.3	0.3		No	Natural Deposits

Radioactive Contaminants

Contaminant (units)	MCL	MCLG	Level Found	Range	Sample Date (if prior to 2023)	Violation	Typical Source of Contaminant
RADIUM, (combined) (pCi/l)	30	0	0.3	0.3	4/6/2020	No	Natural Deposits

Unregulated Contaminants

Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is

warranted. EPA required us to participate in this monitoring. Within the last 12 months we conducted Unregulated Contaminant Monitoring in accordance with US EPA rules. We are required to inform you of this sampling. We are only required to include results showing detections within this report; however, if you would like a copy of all results, please contact us at (414) 766-6600.

Contaminant (units)	Level Found	Range	Sample Date (if prior to 2023)
Metolachlor (dual) (ppb)	0.01	0.00-0.01	
Sodium	14 ppm		
Sulfate	22 ppm		

PFAS Contaminants

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a large group of human-made chemicals that have been used in industry and consumer products worldwide since 1950. The following table list PFAS contaminants which were detected in your water and that have a Recommended Public Health Groundwater Standard (RPHGS) or Health Advisory Level (HAL). There are no violations for detections of contaminants that exceed the RPHGS or HAL. The RPHGS are levels at which concentrations of the contaminant present a health risk and are based on guidance provided by the Wisconsin Department of Health Services. The recommended health-based levels in the table below were in effect in 2024. These levels were revised by WDHS in 2025. They can be found here: https://www.dhs.wisconsin.gov/water/gws.htm

Substance	RPHGS or HAL (ppt)	Level Found (ppt)	Range (ppt)	Sample Date (if prior to 2023)	Violation	Typical Source of Contaminant
PFBS	450,000	0.62	0.39-0.62		No	Used in industry and consumer products
PFHXS	40	1.0	0.88-1.00		No	Used in industry and consumer products
PFHXA	150,000	2.2	1.3-2.2		No	Used in industry and consumer products
PFOS	20	2.3	2.0-2.3		No	Used in industry and consumer products
PFOA	20	2.6	1.8-2.6		No	Used in industry and consumer products
PFOA and PFOS Total	20	4.9	3.8-4.9		No	Used in industry and consumer products

Purchased Water – Racine

Our water system purchases water from RACINE WATERWORKS. In addition to the detected contaminants listed above, these are the results from RACINE WATERWORKS.

Source(s) of Water

Source ID	Source	Depth (in feet)	Waterbody Name	Status
2	Surface Water		Lake Michigan	Active

To obtain a summary of the source water assessment please contact Joel Brunner at (262) 636-9534.

Detected Contaminants

Your water was tested for many contaminants last year. We are allowed to monitor for some contaminants less frequently than once a year. The following tables list only those contaminants which were detected in your water. If a contaminant was detected last year, it will appear in the following tables without a sample date. If the contaminant was not monitored last year, but was detected within the last 5 years, it will appear in the tables below along with the sample date.

Microbiological Contaminants

Contaminant (units)	MCL	MCLG	Highest Monthly	Violation	Typical Source of Contaminant
COLIFORM (TCR)	>5% of monthly samples	0	0.00%	No	Human and animal fecal waste
VIRUSES AND LEGIONELLA	TT	0			Found naturally in water, human and animal fecal waste and multiplies in heating systems

Disinfection Byproducts

Contaminant (units)	Site	MCL	MCLG	Level Found	D	Sample Date (if prior to 2023)	Violation	Typical Source of Contaminant
HAA (ppb)		60	0	16.9	10-24			By-product of drinking water chlorination

Contaminant (units)	Site	MCL	MCLG	Level Found		Sample Date (if prior to 2023)	Violation	Typical Source of Contaminant
TTHM (ppb)		80	0	34.9	15-81			By-product of drinking water chlorination

Inorganic Contaminants

Contaminant (units)	Site	MCL	MCLG	Level Found	Range	Sample Date (if prior to 2023)	Violation	Typical Source of Contaminant
ASBESTOS (million fibers per liter)		7		<0.20			No	Decay of asbestos cement in water mains; erosion of natural deposits
ANTIMONY TOTAL (ppb)		6	6	<0.32			No	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder
ARSENIC (ppb)		10	10	<1.1			No	Erosion of natural deposits
BARIUM (ppm)		2000	2000	20			No	Erosion of natural deposits
BERYLLIUM (ppb)		4		<0.06			No	By-product of industrial processes.
CADMIUM (ppb)		5		<0.12			No	By-product of industrial processes, erosion of natural deposits
CHLORINE RESIDUAL (ppm)		4	4	1.28	1.12- 1.54		No	Water additive for disinfection
CHROMIUM (ppb)		100		<1.2			No	Erosion of natural deposits

Contaminant (units)	Site	MCL	MCLG	Level Found	Range	Sample Date (if prior to 2023)	Violation	Typical Source of Contaminant
CYANIDE (ppb)		200		<11			No	By-product of industrial, mining, and metal finishing processes
FLOURIDE (ppm)		4		0.74	0.60- 0.83		No	Water additive which promotes strong teeth; erosion of natural deposits; discharge from fertilizer and aluminum factories
MERCURY (ppb)		2		<0.047			No	Erosion of natural deposits
NICKEL (ppb)		100		<1.0			No	Erosion of natural deposits
NITRATE (ppm)		10	10	0.4			No	Runoff from fertilizer use; leaching from septic tanks; sewage; erosion of natural deposits
NITRITE (ppm)		1	1	<0.040			No	Runoff from fertilizer use; Leaching from septic tanks, sewage
pН		6.5- 8.5		7.76	7.48- 8.01		No	Erosion of natural deposits
SELENIUM (ppb)		50		<1.0			No	Erosion of natural deposits
SULFATE (ppm)		250		22				Runoff/leaching from natural deposits, industrial wastes
THALLIUM (ppb)		2		<0.76			No	Erosion of natural deposits

Contaminant (units)	Action Level	MCLG	90th Percentile Level Found	# of Results	Sample Date (if prior to 2023)	Violation	Typical Source of Contaminant
COPPER (ppm)	AL=1.3	1.3	0.21	0 of 102 results were above the action level.		No	Corrosion of household plumbing systems; Erosion of natural deposits
LEAD (ppb)	AL=15	0	5.0	0 of 102 results were above the action level.		No	Corrosion of household plumbing systems; Erosion of natural deposits

Organic Compounds (sampled in 2023)

Contaminant (units)	MCLG	MCL	Results	Violation	Typical Source of Contaminant
BROMODICHLORO- METHANE (PPB)	0	80	6.1	No	By-product of industrial processes and drinking water chlorination, petroleum production, gas stations, urban storm runoff and residential uses
BROMOFORM (PPB)	0	80	0.37	No	By-product of industrial processes and drinking water chlorination, petroleum production, gas stations, urban storm runoff and residential uses
CHLOROFORM (PPB)	0	80	8.4	No	By-product of industrial processes and drinking water chlorination, petroleum production, gas stations, urban storm runoff and residential uses

Contaminant (units)	MCLG	MCL	Results	Violation	Typical Source of Contaminant
DIBROMOCHLORO- METHANE (PPB)	0	80	3.2	No	By-product of industrial processes and drinking water chlorination, petroleum production, gas stations, urban storm runoff and residential uses
VOLATILE ORGANIC COMPOUNDS (ppb)			37 other compounds were tested with no detection of any of these chemicals	No	By-product of industrial processes; petroleum production; gas stations; urban storm runoff; residential uses
ATRAZINE (PPB)	3	3	0.024,0.024	No	Storm run-off from agriculture pesticide application
METOLACHLOR (DUAL) (PPB)	NA	NA	0.011, <0.0065	No	Storm run-off from agriculture pesticide application
SYNTHETIC ORGANIC COMPOUNDS (ppb)			41 other compounds were tested with no detection of any of these chemicals.	No	By-product of industrial processes; petroleum production; gas stations; urban storm runoff; residential uses
PERFLUOROOCTANOIC ACID-PFOA (PPT)	70	70	1.73, 2.0	No	By-product of industrial processes, food packaging, commercial household products
PERFLUOROOCTANE SULFONIC ACID-PFOS (PPT)	70	70	1.64, 2.0	No	By-product of industrial processes, food packaging, commercial household products

Particulate Results

Contaminant (units)	MCL	Level Found	Violation	Typical Source of Contaminant
TURBIDITY (NTU)	TT Never >1, 95% of the time <0.3 NTU	Membrane Filtration Max = 0.093 NTU	No	Soil runoff; suspended matter in source water
TURBIDITY (NTU)	TT Never >1, 95% of the time <0.3 NTU	Sand Filtration Max = 0.403 NTU	No	Soil runoff; suspended matter in source water

Radioactive Contaminants

Contaminant (units)	Site	MCL	MCLG	Level Found	Range	Sample Date (if prior to 2023)	Violation	Typical Source of Contaminant
URANIUM (ppb)		30	0	0.347	0.347	2020	No	Erosion of natural deposits
ALPHA EMITTERS (pCi/l)		15	0	0.494	0.494	2020	No	Erosion of natural deposits
COMBINED RADIUM (pCi/l)		5	0	0.837	0.837	2020	No	Erosion of natural deposits

Unregulated Contaminants

Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted. EPA required us to participate in this monitoring. Sampling was conducted in 2018-2019 as part of the EPA UCMR4 sampling program.

Contaminant (units)	MCLG	MCL	Ave. Results Range	Sample Date (if prior to 2023)	Violation	Typical Source of Contaminant
ALKALINITY (ppm)	NA	NA	112 (105- 122)		No	Erosion of natural deposits, addition of chemical in water treatment, industrial by-product

Contaminant (units)	MCLG	MCL	Ave. Results Range	Sample Date (if prior to 2023)	Violation	Typical Source of Contaminant
SODIUM (ppm)	NA	NA	11		No	Erosion of natural deposits
SILICA/SILICATE (ppm)	NA	NA	2.7		No	Erosion of natural deposits
ORTHO- PHOSPHATE (ppm)	NA	NA	1.47 (0.57- 2.29)		No	Erosion of natural deposits,
TOTAL ORGANIC CARBON (ppm)	1908		1.96 (1.8 - 2.3)		No	Decay of natural and man- made deposits

Other Compliance

Other Drinking Water Regulations Violations

Description of Violation	Date of Violation	Date Violation Resolved
Failed to develop an initial inventory for service line materials that meets federal requirements	10/17/2024	2/12/2025

Actions Taken

Exposure to lead in drinking water can cause serious health effects in all age groups. Infants and children can have decreases in IQ and attention span. Lead exposure can lead to new learning and behavior problems or exacerbate existing learning and behavior problems. The children of women who are exposed to lead before or during pregnancy can have increased risk of these adverse health effects. Adults can have increased risks of heart disease, high blood pressure, kidney or nervous system problems.

Copper is an essential nutrient, but some people who drink water containing copper in excess of the action level over a relatively short amount of time could experience gastrointestinal distress. Some people who drink water containing copper in excess of the action level over many years could suffer liver or kidney damage. People with Wilsons Disease should consult their personal doctor.

The initial service line inventory submitted to the DNR on October 16, 2024 was not accepted. The service line inventory was revised and resubmitted on February 13, 2025. Approval of the service line inventory was received on May 22, 2025. The service line inventory is publicly accessible.